GDA Corp.

Operational Information Extraction from P6-AWiFS Imagery

"ResourceSat Real Product Innovations" Seminar November 27, 2007

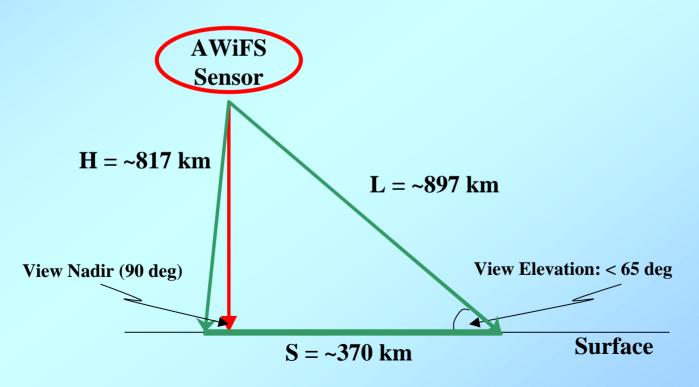
Content

- **1. Surface Reflectance Calibration**
- **2. Feature Detection**
- **3. Crop Mapping and Crop Area Statistics Collection**
- 4. Flood Mapping

P6-AWiFS Image Processing: Surface Reflectance (assumes Standard Atmosphere)

Main goals:

- To correct AWiFS imagery for per pixel variations in view and solar geometry, incidence angle, Earth curvature, surface elevation, & view and solar paths through the atmosphere and atmospheric transmittance along the paths.
- To deliver surface reflectance corrected imagery to clients in an operational setting (*i.e.*, within hours after image acquisition).



AWiFS Geometry

> AWiFS has significant variation of view elevation across the scene, and hence

➢ Distance from the sensor to the ground is ~10% longer on the edge of the scene if compared to the sensor-ground distance for nadir location,

> There are, therefore, per pixel differences in atmospheric transmittance along the view path,

➤ These differences lead to ~10% degradation in pixel values near the edge of the scene.

An Example of pixel value change across the scene for DN=255 (Sun Elevation = 90 deg, DEM = 0 km, View Azimuth = 0 deg, Sun Azimuth = 0 deg)

View Elevation	Band 2 (Blue)	Band 3 (Red)	Band 4 (NIR)	Band 5 (SWIR)
90 degrees (nadir)	255	255	255	255
65 degrees	233	232	232	231

GDA Surface Reflectance Calibration:

- Corrects for variations in view and solar geometry, incidence angle, Earth curvature, surface elevation, & atmospheric transmittance across the scene.
- Calculates surface reflectance values, assuming (i) standard atmosphere and (ii) no surface LC anisotropy, *i.e.*, no BDRF effects.
- > A general equation is below

 $\rho = (\ \pi \bullet (\ L_{\lambda} - L_p \) \bullet d^2 \) \ / \ (\ cos(\Theta) \bullet E_0 \bullet T_z + E_d \) \bullet T_v$

 ρ is surface reflectance,

 L_{λ} is at-sensor spectral radiance,

 L_p is path radiance,

d is earth-sun distance in astronomical units, varies according to the Julian day,

 Θ is sun elevation,

 $\mathbf{E}_{\mathbf{0}}$ is mean per band solar spectral irradiance value,

 E_d is diffuse sky irradiance,

 T_z is atmospheric transmittance along the solar path,

 $\mathbf{T}_{\mathbf{v}}$ is atmospheric transmittance along the view path.

Crop Mapping and Crop Area Statistics Collection with P6-AWiFS Imagery

Crop Mapping

Goals:

To be able to rapidly, and with an acceptable level of accuracy, map dominant and 1-3 subdominant crops for main agricultural regions of the world and

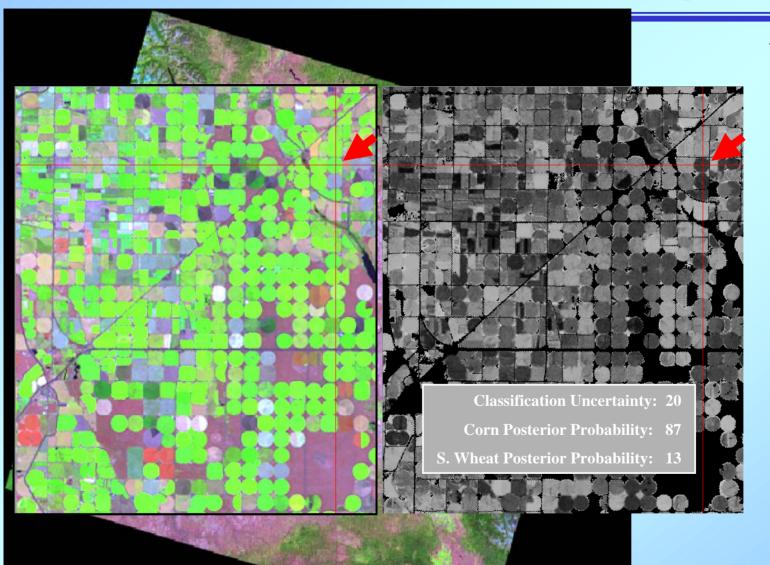
For each administrative unit (or some other AOI), to provide customers with:

- (i) crop maps,
- (ii) crop area statistics, and
- (iii) maps and statistics of crop area changes between image acquisitions

Crop Mapping

Approach:

Employs combination of

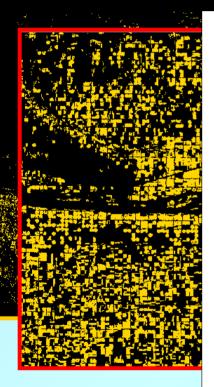

- * unsupervised, guided classification to generate training data and per crop multivariate conditional probabilities and
- * automated supervised classification--Bayesian probabilistic, weight of evidence--to map crops and depict classification confidence

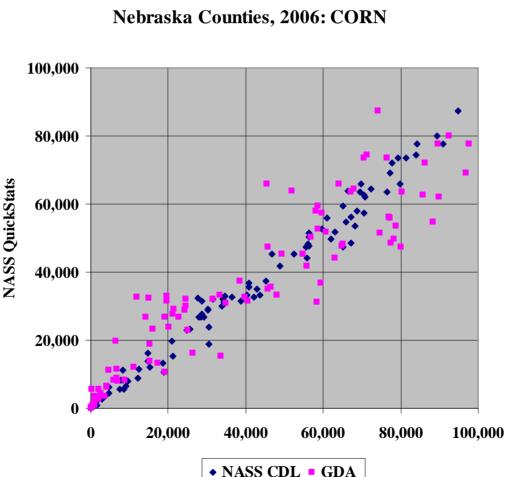
Relies on multiple lines of evidence:

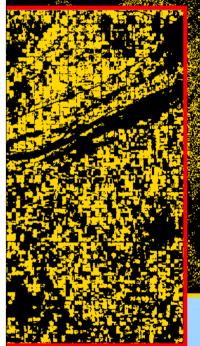
- * results of near-real time cropland monitoring with moderate resolution imagery,
- * forecasts of crop type and crop area from historical crop statistics
- * expected crop phenology and, when available, expected crop progress from historical data
- * expected crop spectral and agricultural field spatial properties
- * evidence from the scene

Crop Mapping

WA, USA: 07/20/2006




Crop Mapping


Nebraska 2006: Corn

USDA NASS: CDL

GDA: RASTA

Crop Area Stats

South Africa: 2007 Corn Estimates (Gauteng, RSA)

	Jan 23	Feb 05 🤇	Feb 14/15	4/15 March 01 March 10/11		March 20
Crop (ha)	136,368	138,236	137,406	62,696	66,023	53,900
Data Gaps* (%)	52	23	1	1	4	0
% Crop Area Change	0	+1	+1	-54	-52	-60

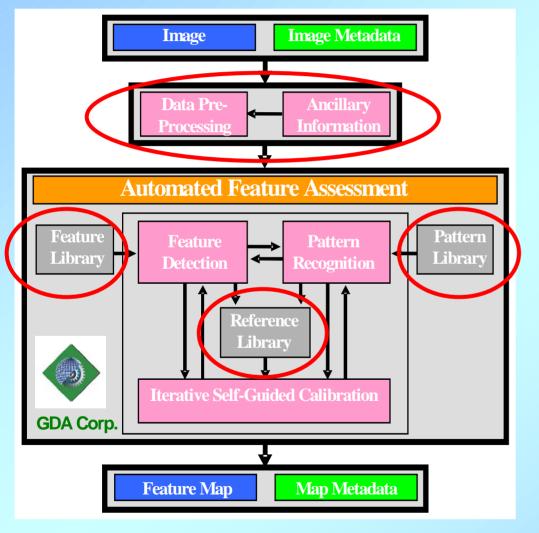
* Data Gap refers to the cropland areas under clouds, cloud shadows, and outside of the image footprint.

End of February: MAJOR CROP FAILURE with ~50% crop loss

Provisional Products for the USA and RSA

- Crop Classification Maps
 Crop Acreage Statistics
- o Locations and Stats for a dominant crop and 1-3 subdominant crops.
- o Particular focus on corn, soybeans, wheat, cotton, and rice.
- Maps and Stats are provided for a scene, scene mosaic, an administrative area, or any AOI.
- Can be generated for most of the USA and all of South Africa. Currently extending to Argentina, Brazil, and Australia.
- o Current turn around: 3 to 10 days per footprint.

Provisional Products for any footprint

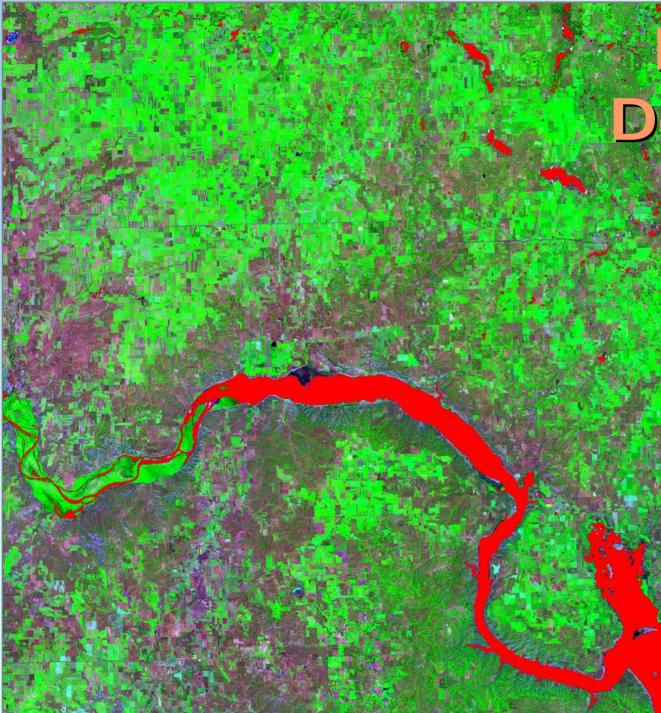

- Cropland Status Maps
- Cropland Status Statistics
- o **Classes:**
 - ✓ Bare soil (wet to dry soil classes),
 - ✓ Active/Green Crops (healthy to stressed and densely to sparsely vegetated),
 - ✓ Open Water,
 - ✓ Data Gaps (clouds, cloud shadows, dense haze, SLC-off)
- Maps and Stats are presented for a scene, scene mosaic, an administrative area, or any AOI.
- o Current turn around: 2 to 7 days per footprint.

Feature Detection with P6-AWiFS Imagery

GDA Feature Detection

Iterative Evidence / Knowledge Accumulation

- From Global to Scene Specific Knowledge Database
- Spectral
- Spatial
- Contextual / Pattern / Association


Probability Based

- per Pixel
- per Object

Flexible

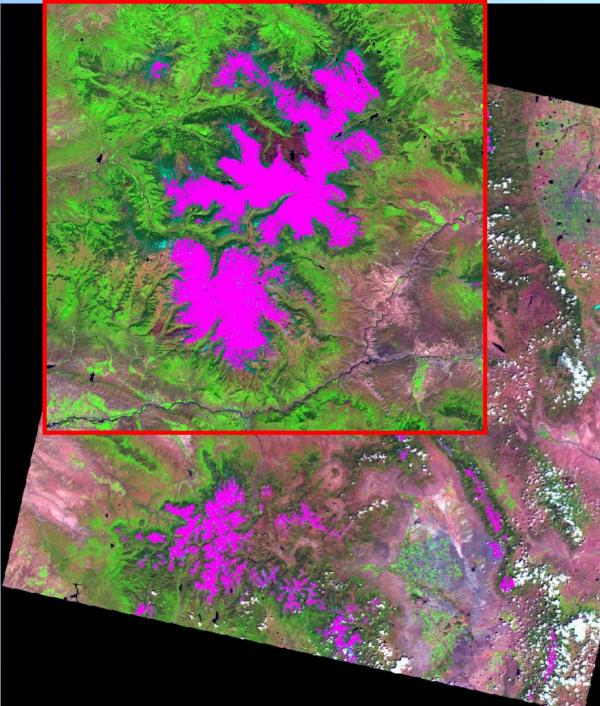
- Can be set to be more or less "aggressive"
- Can work in an interactive mode

Feature Detection: Water

Self-learning expert system

> Relies on a global knowledge base about water properties and extends global knowledge to the properties of a given scene

If available, uses ancillary LC information as an extra line of evidence in the decision making process



Feature Detection: Clouds & Shadows

The same approach is used as for water detection

Feature Detection: Snow/lce

The same approach is used as for water and cloud / cloud shadow detection

Flood Mapping with P6-AWiFS Imagery

Flood Mapping

Goals:

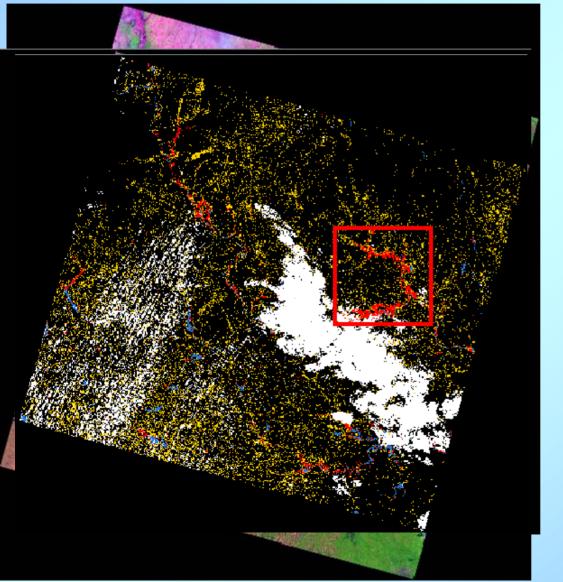
To be able to rapidly and accurately detect flood events

To provide clients with spatial and statistical data on flood locations, extent, duration, and severity.

Flood Mapping

Identification of:

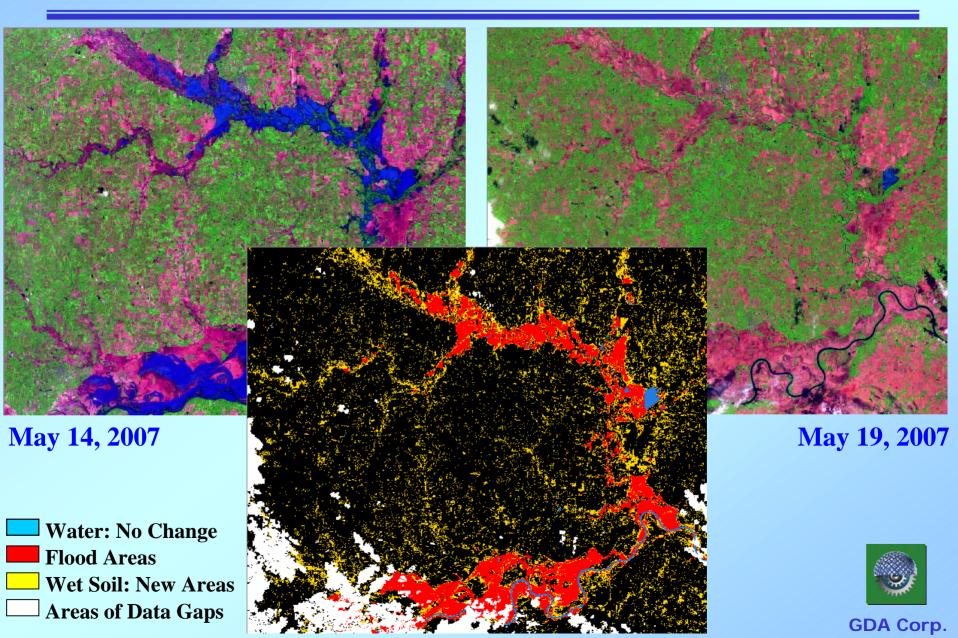
- Areas of Flood / Inundation (with detectable standing water),
- Areas of Soil (Over)-Saturation (without detectable standing water)


Analysis of:

> Temporal Changes in Flood / Inundation and Soil Saturation

GDA performs automated mapping of water and wet soil and monitoring of their change with AWiFS and Landsat imagery.

Flood Mapping


central part of South Nebraska

Flood Mapping

Contract Vehicle

GDA Corp. is a prime vendor on the Arctic Slope Regional Corporation Management Services Prime Vendor Contract for the USDA.

Please visit our Table-top display for more information.

THANK YOU!

Contact Information

GDA Corp.

200 Innovation Blvd.

Suite 234

State College, PA 16803

T: 814-237-4060

F: 814-689-3375

E: <u>dmitry@gdacorp.com</u> www.gdacorp.com